Конспект на тему: Функция icon

Конспект на тему: Функция



НазваниеКонспект на тему: Функция
Юлина О.А
Дата конвертации08.02.2013
Размер71.27 Kb.
ТипКонспект
источник

Русская гимназия


КОНСПЕКТ


на тему:


Функция


Выполнил

ученик 10«Ф» класса Бурмистров Сергей


Руководитель

учитель Математики

Юлина О.А.


Нижний Новгород

1997 год

Функция и её свойства


Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.

Переменная х- независимая переменная или аргумент.

Переменная у- зависимая переменная

Значение функции- значение у, соответствующее заданному значению х.

Область определения функции- все значения, которые принимает независимая переменная.

^ Область значений функции (множество значений)- все значения, которые принимает функция.

Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)

Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)

Возрастающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)2)

Убывающая функция- если для любых х1 и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2)


Способы задания функции

  • Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x)-некоторое выражение с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.

  • На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.



Виды функций и их свойства


  1. ^ Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат

  2. Прямая пропорциональность- функция, заданная формулой у=kx, где к¹0. Число k называется коэффициентом пропорциональности.

Cвойства функции y=kx:

  1. Область определения функции- множество всех действительных чисел

  2. y=kx - нечетная функция

  3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой


3)Линейная функция- функция, которая задана формулой y=kx+b, где k и b-действительные числа. Если в частности, k=0, то получаем постоянную функцию y=b; если b=0, то получаем прямую пропорциональность y=kx.

Свойства функции y=kx+b:

  1. Область определения- множество всех действительных чисел

  2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.

  3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

Графиком функции является прямая.


4)Обратная пропорциональность- функция, заданная формулой y=k/х, где k¹0 Число k называют коэффициентом обратной пропорциональности.

Свойства функции y=k/x:

  1. Область определения- множество всех действительных чисел кроме нуля

  2. y=k/x- нечетная функция

  3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на промежутке (0;+¥).

Графиком функции является гипербола.

5)Функция y=x2

Свойства функции y=x2:

  1. Область определения- вся числовая прямая

  2. y=x2 - четная функция

  3. На промежутке [0;+¥) функция возрастает

  4. На промежутке (-¥;0] функция убывает

Графиком функции является парабола.


6)Функция y=x3

Свойства функции y=x3:

  1. Область определения- вся числовая прямая

  2. y=x3 -нечетная функция

  3. Функция возрастает на всей числовой прямой

Графиком функции является кубическая парабола


7)Степенная функция с натуральным показателем- функция, заданная формулой y=xn, где n- натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2; y=x3. Их свойства рассмотрены выше.

Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x2. График функции напоминает параболу y=x2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем «теснее прижимаются» к оси Х, чем больше n.

Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x3. График функции напоминает кубическую параболу.

8)^ Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x-n, где n- натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.

Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x-n обладает в основном теми же свойствами, что и функция y=1/х.

Пусть n- четное число, например n=2.

Свойства функции y=x-2:

  1. Функция определена при всех x¹0

  2. y=x-2 - четная функция

  3. Функция убывает на (0;+¥) и возрастает на (-¥;0).

Теми же свойствами обладают любые функции при четном n, большем двух.


9)Функция y=Öх

Свойства функции y=Öх:

  1. Область определения - луч [0;+¥).

  2. Функция y=Öх - общего вида

  3. Функция возрастает на луче [0;+¥).


10)Функция y=3Öх

Свойства функции y=3Öх:

  1. Область определения- вся числовая прямая

  2. Функция y=3Öх нечетна.

  3. Функция возрастает на всей числовой прямой.



11)Функция y=nÖх

При четном n функция обладает теми же свойствами, что и функция y=Öх. При нечетном n функция y=nÖх обладает теми же свойствами, что и функция y=3Öх.


12)Степенная функция с положительным дробным показателем- функция, заданная формулой y=xr, где r- положительная несократимая дробь.

Свойства функции y=xr:

  1. Область определения- луч [0;+¥).

  2. Функция общего вида

  3. Функция возрастает на [0;+¥).

На рисунке изображен график функции y=x5/2. Он заключен между графиками функций y=x2 и y=x3, заданных на промежутке [0;+¥).Подобный вид имеет любой график функции вида y=xr, где r>1.

На рисунке изображен график функции y=x2/3. Подобный вид имеет график любой степенной функции y=xr , где 0

13)^ Степенная функция с отрицательным дробным показателем-функция, заданная формулой y=x-r, где r- положительная несократимая дробь.

Свойства функции y=x-r:

  1. Обл. определения -промежуток (0;+¥)

  2. Функция общего вида

  3. Функция убывает на (0;+¥)


14)Обратная функция

Если функция y=f(x) такова, что для любого ее значения yo уравнение f(x)=yo имеет относительно х единственный корень, то говорят, что функция f обратима.

Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y.

Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно прямой y=x.

15)Сложная функция- функция, аргументом которой является другая любая функция.

Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2. Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.




Похожие:

Конспект на тему: Функция iconКонспект открытого урока литературы в 5 классе на тему: «Нравственные уроки сказки К. Г. Паустовского «Теплый хлеб». Реальные и фантастические события и персонажи сказки, функция пейзажа в произведении»
Моу кипчаковская средняя общеобразовательная школа муниципального образования кораблинский муниципальный район рязанской области
Конспект на тему: Функция iconКонспект по теме: «Функция». Почти всё, что происходит с нами или вокруг нас, связано с понятием «функция», потому что всё вокруг взаимосвязано
Почти всё, что происходит с нами или вокруг нас, связано с понятием «функция», потому что всё вокруг взаимосвязано
Конспект на тему: Функция iconГраницы, функция линейная
Чтобы функция нигде не убывала, необходимо чтобы все возможные угловые коэффициенты этих прямых были неотрицательны
Конспект на тему: Функция iconМетодические рекомендации по методике развития речи для студентов озо
Основные понятия: язык, речь, национально-культурная функция речи, эстетическая функция речи, языковое сознание
Конспект на тему: Функция iconКонспект урока в 7 классе на тему «Олимпийские игры» к умк м. З. Биболетовой, Н. Н. Турбаневой "Enjoy English". Цели : Уметь построить устное высказывание на заданную тему
План-конспект урока в 7 классе на тему «Олимпийские игры» к умк м. З. Биболетовой, Н. Н. Турбаневой “Enjoy English”
Конспект на тему: Функция iconКонспект по английскому языку в 9 классе (5-й год обучения) на тему «Уэльс и Уэльсцы» (урок знакомства с культурой и традициями Уэльса)
План-конспект по английскому языку в 9 классе (5-й год обучения) на тему «Уэльс и Уэльсцы»
Конспект на тему: Функция iconКонспект итогового бинарного подгруппового занятия в средней группе
Цель. Закрепление знаний о весенних цветах: тюльпане, нарциссе, одуванчике. Учить различать цветы по цвету и форме. Коррекция сенсорных...
Конспект на тему: Функция iconЛинейная функция и ее график Область определения и область значений функции
Определение. 1: Область определения функции это множество всех значений Х, для которых функция имеет смысл
Конспект на тему: Функция iconКонспект урока по английскому языку в 3 классе (2-й год обучения) на тему «Мой домашний питомец». Цели
План-конспект урока по английскому языку в 3 классе (2-й год обучения) на тему «Мой домашний питомец»
Конспект на тему: Функция iconКонспект непрерывной образовательной деятельности на тему: «Внимание светофор!»

Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©zazdoc.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы